U.G. 5th Semester Examination - 2020 MATHEMATICS

Course Code: BMTMDSHT1 [DSE1]

Course Title: Linear Programming Problem and Game Theory

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) What is the convex hull of the set

$$S = \left\{ (x, y) : \frac{x^2}{3} + \frac{y^2}{2} = 1 \right\} ?$$

- b) Express (5, 2, 1) as a linear combination of (1, 1, 0) and (3, 0, 1).
- c) State the condition for unbounded solution of an LPP in simplex algorithm.

d) Check whether the solution $x_1=2$, $x_2=0$ and $x_3=1$ is a basic solution or not to the following set of equations

$$2x_1 + x_2 - x_3 = 3$$

 $x_1 + 2x_2 + 3x_3 = 5$

- Determine the position of the point X = (1, 2, 3, -5) relative to the hyperplane $2x_1+3x_2+4x_3+5x_3=7$.
- f) What is the necessary and sufficient condition for a point $X \ge 0$ in the convex set S of all feasible solutions of the system AX=b, $X \ge 0$ to be an extreme point?
- g) Write down the standard primal problem and its dual problem in matrix form.
- h) Find the dual of the LPP:

Minimize
$$z=3x_1+4x_2$$

subject to $2x_1+4x_2 \ge 60$
 $3x_1+2x_2 \ge 50$
 $x_1, x_2 \ge 0$

i) In Hungarian method if the number of lines drawn to cover the zeros is less than the order of the cost matrix than what is done?

- j) Prove that $x_{ij} = \frac{a_i b_j}{M}$; [i=1, 2, ..., m; j=1, 2, ..., n], where $M = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$ is a feasible solution of a transportation problem.
- k) Define a loop in a transportation table.
- 1) Write down the total number of possible solutions for n×n assignment problem.
- m) Define artificial variable in Linear Programming Problem.
- n) Examine whether the set $S = \{(x_1, x_2): x_1^2 + x_2^2 = 4\}$ is a convex set or not.
- Use dominance property to find the value of the game:

	\mathbf{B}_{1}	B_{2}
\mathbf{A}_{1}	5	4
\mathbf{A}_{2}	10	25

2. Answer any **five** questions:

$$2 \times 5 = 10$$

a) $x_1=1$, $x_2=3$, $x_3=2$ is a feasible solution of the equations:

$$2x_1 + 4x_2 - 2x_3 = 10$$
$$10x_1 + 3x_2 + 7x_3 = 33$$

Reduce it to a basic feasible solution.

b) Find the feasible region bounded by the constraints:

$$x_1 + x_2 \ge 2$$

 $2x_1 + 3x_2 \le 6$
 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0$

c) Using north-west corner rule find the initial basic feasible solution to the following transportation problem:

		D_1	D_2	D_3	Availability
	O_1	3	8	7	10
	O_2	6	5	8	5
Dema	nds	6	5	4	

- d) Show that a hyperplane is always a convex set.
- e) For the game with pay-off matrix:

]	Player A	A
		I	II	Ш
Dlassau D	I	-1	2	-2
Player B	${ m II}$	6	4	-6

Determine the best strategies for player A and B and also the value of the game for them.

f) Find two basic feasible solutions of the system

$$x_1 + 2x_3 = 1$$

 $x_2 + x_3 = 4$

g) Reduce the following LPP to its standard form:

Maximize
$$z=2x_1-x_2+2x_3$$

subject to $x_1+x_2-3x_3 \le 8$
 $4x_1-x_2+x_3 \ge 2$
 $2x_1+3x_2-x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

- h) Formulate mathematically an assignment problem.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) Prove that the objective function of a linear programming problem assumes its optimal value at an extreme point of the convex set of feasible solution.
 - b) Solve the following LPP by simplex method:

Maximize
$$z=5x_1+3x_2$$

subject to $3x_1+5x_2 \le 15$
 $5x_1+2x_2 \le 10$
 $x_1, x_2 \ge 0$

c) Solve the following game problem by algebraic method:

		В	
	-2	3	-1
A	4	-1	2
	1	2	3

4. Answer any **one** question:

- $10 \times 1 = 10$
- a) i) If for a basic feasible solution X_B of a linear programming problem

Maximize Z=CX

subject to AX=b,
$$X \ge 0$$

We have $Z_j - C_j \ge$ for every column a_j of A, then prove that X_B is an optimal solution.

ii) Solve graphically:

Maximize
$$Z=9x+8y$$

subject to $4x+3y \le 30$
 $2x+3y=18$

$$x, y \ge 0$$
 7+3

b) i) Using dual simplex method, show that the following LPP has no feasible solution:

Minimize
$$Z=x_1+x_2$$

subject to $2x_1+x_2 \ge 2$
 $-x_1-x_2 \ge 1$
 $x_1, x_2 \ge 0$

ii) Obtain an optimal BFS for the following transportation problem: 4+6

		_		D_4	
O_1	19	30	50	10	7
O_2	70	30	40	60	9
O_3	19 70 40	8	70	20	18
$\mathbf{b}_{\mathbf{j}}$	5	8	7	14	_

c) i) Solve the following game graphically:

ii) Solve the assignment problem where the assignment cost of assigning any operation to any one machine is given below:

5+5
